The Modern Shift to Below-Replacement Fertility: Has Israel’s Population Joined the Process?

DOV FRIEDLANDER AND CAROLE FELDMANN*

INTRODUCTION

The modern shift to ‘below replacement’ fertility levels has been the most significant demographic development in industrial societies since the fertility transitions of the nineteenth and early twentieth centuries. These transformations reduced total fertility of 2.5–3.0 during the 1950s to low levels of 1.4–1.9 during the late 1970s and 1980s. An examination of cohort marital fertility shows similar patterns. Hence, although a delay in marriage or a shift of reproduction to later marriage durations could have affected current total fertility in these societies, they cannot possibly provide the whole explanation. This transition to very low fertility levels has been explained by the general rise in the status of women, the large variety of substitutes for children and family in modern society, and the increasing costs of raising ‘quality’ children.

Israel’s Jewish population is a modern, urban, industrial society. In terms of education levels, occupational distribution, women’s participation in the labour force, consumption patterns, and aspirations it resembles European societies, though not the richest among them. Therefore, it would be expected that its characteristics should also result in low fertility levels in Israel. Nevertheless, total fertility in 1989 was 2.77 births per woman.

The major questions raised in this paper are: Is Israel’s population an exception? If so, an explanation is needed. Alternatively, does the great heterogeneity of Israel’s population disguise fertility declines which might have occurred in some population subgroups while others are characterized by high fertility?

ETHNIC AND RELIGIOSITY DIFFERENCES IN ISRAEL’S JEWISH POPULATION

The Jewish population in Israel can be divided into immigrants and Israeli-born, and also by origin, namely Asia-Africa and Europe. We define individuals as being of Asian-African and European ethnicity, respectively if they had immigrated from these continents, or are first-generation Israeli-born descendants of such immigrants. A previous study has demonstrated the strong association between marital fertility and ethnicity. It has been shown that fertility of the European group has been moderately low for several decades. We now ask whether this group has joined the new European

* Department of Demography The Hebrew University of Jerusalem.
1 Total Fertility adopted and/or calculated from Statistical Abstract of Israel, Israel Central Bureau of Statistics, Vol 1–41.
3 See fn. 1.
'below-replacement fertility pattern'. The total fertility of this ethnic group was 2.60 in 1989, compared with 2.83 between 1970 and 1974. Although this is a significant decline, the level of 1989 does not, on the face of it, seem to support the hypothesis that members of the European ethnic group have joined, or are about to join, the new low European fertility pattern. The same conclusion is reached when the decline in cohort marital fertility rates is considered.

Fertility in the Asian-African ethnic group was high during the early 1950s, shortly after the mass immigration wave when their total fertility was 5.5 births per woman. However, with increased length of stay in Israel, fertility declined fairly rapidly, so that their total fertility in 1989 was 2.84 births per woman.5

Differentiation between the two major ethnic groups of Israel's heterogeneous population cannot identify a major sub-population with below-replacement fertility. However, another source of fertility variation in Israel's population, apparently much more significant than ethnicity, is religiosity. Heilman and Friedman have described the characteristics of Israel's religious population.6 According to them, the origin of Israel's current religiosity division dates back to the period of emancipation and enlightenment. There were three responses to this movement. The first was assimilation – the complete adoption of the culture of the larger society. The second was acculturation – the promotion of cultural contact with the outer world, whilst retaining Jewish culture and beliefs. The third was contra-acculturation – turning away from the contemporary way of life in order to preserve traditional ways. Israel's national religious population forms a continuous link with the acculturation stream, while Israel's ultra-orthodox groups originate from the contra-acculturation group. Indeed, the ultra-orthodox in Israel, as in the diaspora, 'strived to separate themselves not only from every aspect of the outside culture, but also from people or things that, having passed near or through that world, carried contaminating elements of it'.7 Rough estimates suggest that total fertility in the ultra-religious population is of around 7, whereas in the national religious population it is about 4.5 births per woman.

In the 1984 elections some 15 per cent of the total electorate voted for the religious parties, which should be considered a minimum estimate of the religious population, because an unknown, though significant proportion of the ultra-orthodox community, ban the elections on ideological grounds. Additionally, a proportion among the remaining orthodox population vote for right-wing national non-religious parties, while the opposite voting behaviour is rare. Hence, 20 per cent would be a more realistic estimate of the religious part of Israel's population.

The very high fertility of the religious groups and their weight in the population lead us to the hypothesis that fertility of the non-religious part of the European ethnic group must have been much lower than the average for this ethnic group, possibly 'below replacement level'. A similar argument, though not as forceful, may also be valid for the Asian–African ethnic group.

The following sections deal mainly with the fertility patterns of the European population, attempting to control religiosity at low levels. The purpose is to uncover the main socio-economic variables which explain fertility variation and to assess the fertility level of the non-religious European population. A similar analysis enables us also to assess the fertility level of the non-religious Asian–African population.

5 See fn. 1.
7 Ibid. p. 9.
DATA AND VARIABLES

The analysis covers Israel’s Jewish urban population which forms some 90 per cent of the total. The units of analysis are based on aggregated populations in geographical areas which are either localities or parts of localities when these are large.

Census coverage is not complete among the religious population. Most conspicuous in this respect are the extreme Naturei Karta and similar extreme factions. However birth registration is complete, for it is very difficult to evade the registration of a birth, and it would be very costly to do so, particularly for large families who receive significant welfare benefits. Hence, age-specific fertility rates for geographical units that contain relatively high proportions of these religious factions are biased. We have, therefore, estimated total fertility for these units by stable-population techniques. It has been shown that the stability assumption is reasonable.

In all, 215 urban units are used in our analyses. For each of these units, total fertility, as well as various socio-economic variables, have been estimated.

Beginning with the major dependent variable we have:

Total fertility 1983–85, for women born either in European countries or born in Israel to fathers born there (i.e. of European ethnicity).

Several explanatory variables are used in the analysis:

The economic-status variable is the proportion employed, whose income in 1983 was within the upper decile of Israel’s income distribution. This variable will be referred to as the high-income variable.

The social-status variable is the proportion of women aged 25–34 who had received more than 12 years of formal education. This is referred to as the high-education variable.

The religiosity variable is based on the general election results of 1984. It is the aggregated percentage vote for religious parties.

Women’s participation in the labour force at ages 25–34 is a proxy for women’s extra-familial activities during the major childbearing ages. It is referred to as women’s employment.

Metropolitan is a variable which indicates whether a unit belongs to the Tel Aviv or Haifa metropolitan areas. The meaning of metropolitan residence is complex, and is related to opportunities in general.

IS ISRAEL’S POPULATION ON THE ROUTE TO BELOW-REPLACEMENT FERTILITY?

We show in this section that in spite of the current relatively high overall total fertility a major part of Israel’s population is proceeding toward the new European low-fertility pattern.

An examination of the distribution of total fertility of the European ethnic group shows that even with no control on religiosity, total fertility in over 55 per cent of the 215 population units are below 2.5, and in about half of these below 2.1. However, when we regress total fertility rate on socio-economic and religiosity explanatory variables (to be discussed in a following section), and compute predicted values of total fertility on the assumption of zero religiosity, the percentage of units with below-replacement fertility is 94 per cent. Considering the Asian-African ethnic group, which is at an earlier

stage of the process, their total fertility is below 2.5 in 21 per cent of the population units. However, when the predicted total fertility values for this ethnic group of zero religiosity are used, the percentage of units in which total fertility is less than 2.5 comes to 56 per cent. Hence, it appears that the respective total fertility of 2.60 and 2.84 of the European and the Asian–African ethnic groups disguise a process of fertility decline towards below-replacement levels. The European group has reached an advanced stage in this process, the Asian–African is just at its beginning.

The association of religiosity with total fertility is the strongest for the explanatory variables, as is shown in Table 1. This table presents the proportions of units with above average values by various explanatory variables for three ranges of total fertility. Although the associations between fertility and each of these explanatory variables are not controlled by others, they provide some indication to the explanation of low fertility. For example, the high-education variable in the table shows that the overall percentage of women with more than 12 years of formal education was 36.4 among all units. However, 64.2 per cent of geographical units in which total fertility was 2.1 or lower, contained an above-average proportion of women with high education. This percentage was 59.4 and 31.6, among units in the medium and high-fertility categories respectively. Hence, there is a strong negative association between educational levels and fertility. Similarly, income, women’s employment, and metropolitan residence are negatively associated with fertility. Religiosity is positively related with fertility and appears to be the strongest among the associations shown in this table.

We conclude from this part of the analysis that fertility of Israel’s population of European ethnicity is similar to the new European pattern, and that they can be explained in terms of social status and economic welfare levels, and women’s extra familial activities; variables which have been regarded as important in the explanation of low fertility in European countries. However, Israel differs from these European countries in the effect of religiosity, which provides the most important explanation for Israel’s overall high fertility. These relationships will be restated in terms of specific hypotheses, and tested through multivariate analyses.

MAJOR HYPOTHESES

The hypotheses listed below are based on explanations proposed for below-replacement fertility patterns in various European countries, and on theoretical considerations of fertility processes.

Religiosity: The higher the proportion of the religious population in the unit, the higher its fertility level, other things being equal. This relationship has been analyzed mostly in micro-level studies, and found to be significant.9

High Income. The relationship between income and fertility has been studied extensively since the 1940s. The leading hypothesis was that income and fertility are positively related when other variables are controlled, because the conflict between an additional child and alternative non-familial goals is weaker, given higher income. The relationship was described as ‘elusive’, because in contrast to expectations, it was found to be negative in many studies.10 A negative relation is also shown in Table 1, but this

Table 1. Percentages of units with above average values in various explanatory variables for three ranges of total fertility levels (for the population of European ethnicity)

<table>
<thead>
<tr>
<th>Explanatory variables*</th>
<th>Total fertility rate (1)</th>
<th>High education (2)</th>
<th>High income (3)</th>
<th>Women's employment (4)</th>
<th>Religiosity (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TF ≤ 2.1</td>
<td>64.2</td>
<td>67.9</td>
<td>62.3</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td>2.1 < TF ≤ 2.5</td>
<td>59.4</td>
<td>54.7</td>
<td>59.4</td>
<td>19.9</td>
<td></td>
</tr>
<tr>
<td>TF > 2.5</td>
<td>31.6</td>
<td>22.1</td>
<td>36.8</td>
<td>56.8</td>
<td></td>
</tr>
<tr>
<td>Means</td>
<td>36.4</td>
<td>11.2</td>
<td>64.0</td>
<td>13.5</td>
<td></td>
</tr>
</tbody>
</table>

* See explanations in section on data and variables.

is before controlling for other variables. Our hypothesis is that the effect of income on fertility in our multivariate analyses is positive.

Women's Employment. A high proportion of women in the labour force is expected to be negatively related to fertility levels. For example, it has been shown that women who are employed are more likely to postpone childbearing. Women’s employment does not only tend to lengthen birth intervals, but may also lead many women to stop reproducing, at relatively low fertility levels. The relation between fertility and women’s employment has been studied extensively.

Education. The higher the educational levels of the adult population in a community, the lower their expected fertility levels. This is assumed to be the result of two indirect effects. First, women who have received more years of education tend to marry at older ages, and this would affect total fertility negatively. Secondly, such women tend to participate more in extra-familial activities, (one of these is their participation in the labour force) which will again affect fertility negatively.

Metropolitan Residence. Fertility levels in metropolitan areas are thought to be lower, when other variables are controlled. In such areas childbearing is more costly, extra-familial alternative activities are more diverse, and the society is more competitive.

TESTING THE HYPOTHESES

The above hypotheses imply that two variables are likely to have positive effects on fertility: religiosity and income. The remaining variables: educational levels, women’s employment, and metropolitan residence, should affect fertility negatively. We use multivariate regressions to test these hypotheses.

Some explanatory variables are obviously intercorrelated, and this could affect the estimation of the regression coefficients. Preliminary analysis suggested that due to multicollinearity, only one of the economic-status, social-status and women’s-employment variables, can be included in a single regression. Hence, we consider three alternative models as specified in Table 2.

Table 2. Regressions of total fertility on various explanatory variables, population of European ethnicity

<table>
<thead>
<tr>
<th>Explanatory variables*</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(t)</td>
<td>(\Delta R^2)</td>
<td>(t)</td>
</tr>
<tr>
<td>High education</td>
<td>-3.60</td>
<td>0.017</td>
<td></td>
</tr>
<tr>
<td>High income</td>
<td></td>
<td></td>
<td>-2.45</td>
</tr>
<tr>
<td>Women's employment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metropolitan residence</td>
<td>-3.07</td>
<td>0.010</td>
<td></td>
</tr>
<tr>
<td>Religiosity</td>
<td>26.17</td>
<td>0.759</td>
<td></td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.785</td>
<td>0.778</td>
<td></td>
</tr>
</tbody>
</table>

* See explanation in section on data and variables.

In each of Models 1 to 3 only one of the education, income and women's employment variables is included, in addition to metropolitan residence and religiosity. The table shows that Models 1 and 3 are consistent with our hypotheses, while in Model 2 the income variable has a negative coefficient, contrary to expectation. Modifying the income variable, by removing the effect of education does not alter the sign of the income coefficient. Hence, as in many other studies, the coefficient of high income is negative i.e. higher income is not associated with higher fertility. These regressions explain nearly 80 per cent of the variance, and confirm that religiosity is invariably the most important explanatory variable, making the largest contribution to the explained variance.\(^{13}\) Hence, the findings, so far, show that the new low European fertility pattern is present in Israel's population, particularly in the European ethnic group. Low proportions of religiosity tend to reduce fertility very considerably, while increased socio-economic status, or women's employment, as well as urban residence, further reduce fertility levels.

THE EXPLANATION OF FERTILITY LEVELS THROUGH A RECURSIVE MODEL

The above relationships can be expressed by a model of structural equations in a recursive system. It provides a useful way of explaining and interpreting fertility levels and their relationships with the explanatory variables. We first present a theoretical recursive model of fertility illustrated by Equations (1)-(3), and Figure 1 which is justified by its assumed interrelationship structure as specified below:

\[
W = a_w + b_{ws} S + b_{wr} R + b_{wm} M + \varepsilon_w, \quad (1)
\]

\[
I = a_i + b_{is} S + b_{ir} R + b_{im} M + \varepsilon_i + W + \varepsilon_i, \quad (2)
\]

\[
F = a_f + b_{fs} S + b_{fr} R + b_{fm} M + b_{fw} W + b_{fi} I + \varepsilon_f, \quad (3)
\]

where \(W, S, R, M, I\) and \(F\), represent women's employment, social status, religiosity, metropolitan residence, income and total fertility, respectively. \(\varepsilon_w, \varepsilon_i, \) and \(\varepsilon_f\) are residual error terms.

It is assumed in such a model that all the explanatory variables i.e., social status, religiosity, metropolitan residence, women's employment, and income, could affect total fertility, while total fertility does not affect these variables. Similarly, social status, religiosity, metropolitan residence and women's employment may affect income, but

\(^{13}\) Very similar relationship patterns are obtained when the dependent variable is the average number of births per married woman in the 25-34 age group.
cannot be affected by it. Also, status, religiosity and metropolitan residence may affect women's employment, but this variable does not affect the former variables (see Figure 1). If, in addition, it is also assumed that the error terms e in the three equations are uncorrelated, the system becomes a recursive model and can be appropriately estimated by ordinary least square methods.\footnote{J. Johnston, \textit{Econometric Methods}, McGraw-Hill International Editions, (1987), pp. 467–469.}

In this model, women's employment and income may be considered as 'intervening' between the status, religiosity, and metropolitan residence variables on one hand, and total fertility on the other. Therefore, the status, religiosity, and metropolitan residence variables may affect the total fertility directly, and/or indirectly, through the two intervening explanatory variables. Similarly, women's employment may have direct and/or indirect effects, while high income may only have a direct effect on total fertility.

An example of a general hypothesis within such a model is illustrated in the first panel of Table 3, and by the signs above the arrows in Figure 1. Accordingly, extensive extra-familial activities, such as women's employment, can be expected in high-status populations. Such activities conflict with high fertility. By implication, the high-status variable would have an indirect negative effect on fertility through such intervening 'conflict' variables. However, at least according to our initial hypothesis, the income variable should have a positive effect on fertility and is expected to reduce that conflict.

In addition to these potential indirect effects, a large proportion of high status might also have a negative direct effect on fertility because in such populations there is a high propensity for modern consumption patterns, and for raising 'quality' children while limiting their numbers.

Religiosity may imply an idealistic approach to childbearing with a positive direct effect on fertility. But it also has potential indirect effects on fertility. Religiosity is likely to reduce women's employment, and they affect fertility positively. However, social

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{recursive_model.png}
\caption{Recursive model: the theoretical system.}
\end{figure}
Table 3. *Structural equations of a recursive system: Values of t and R²*

<table>
<thead>
<tr>
<th>Explanatory variable*</th>
<th>Dependent variables in structural equations†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>General hypotheses</td>
</tr>
<tr>
<td></td>
<td>W</td>
</tr>
<tr>
<td>High education (S)</td>
<td>+</td>
</tr>
<tr>
<td>Religiosity (R)</td>
<td>-</td>
</tr>
<tr>
<td>Metropolitan residence (M)</td>
<td>+</td>
</tr>
<tr>
<td>Women’s employment (W)</td>
<td>‡</td>
</tr>
<tr>
<td>High income (I)</td>
<td>‡</td>
</tr>
<tr>
<td>R²</td>
<td>0.701</td>
</tr>
</tbody>
</table>

* See explanation in section on data and variables.
† W = Women’s employment; F = Total Fertility; I = High Income.
‡ Variable not in the equation.
ISRAEL: BELOW-REPLACEMENT FERTILITY?

organization within the religious community, certainly among the ultra-orthodox, is likely to reduce the conflict between women’s employment and high fertility, as is argued in the next section. The role of income is similar to that stated above.

Similar considerations can be applied to the direct and indirect relationships between urban residence and fertility.

While such a general model of assumed relationships has merit in theory, it cannot be fully estimated in practice due to multicollinearity. Hence, we use three sub-models to avoid this difficulty. Table 3 shows the t-values of the regression coefficients for these sub-models. Their signs can be compared to those in the general relationships in the first panel of Table 3.

Sub-model 1 in that table illustrates one specific empirical link. Women’s employment has a negative effect on fertility, and is positively related with status. Hence, consistently with the assumed relationships, high status tends to reduce fertility indirectly by way of such ‘conflict’ variables. However, its direct relationship with fertility is insignificant, whereas we expected it to be negative (see Figure 2 and Table 3).

Religiosity affects fertility positively both directly and indirectly, consistently with the general hypothetical system.

The direct relationship between metropolitan residence and fertility can be interpreted as being due to the higher costs of child rearing in metropolitan areas, which is consistent with the hypothetical system. However, there is no indirect significant relationship between metropolitan residence and fertility.

The comparison between the assumed, and the empirical relationships of sub-models 2 and 3 show reasonably good consistency (see Table 3).

Studies of the emergence of low total fertility in European countries have suggested that delayed marriage played a major role in the establishment of the new pattern of low fertility.\(^1\) Hence, we propose another model to analyze the effects of social status,

metropolitan residence, and religiosity on fertility by way of a nuptiality variable. This model is expressed by Equations (4) and (5).

\[
N = a_n + b_n S + b_{ns} R + b_{nm} M + e_n
\]

\[
F = a_f + b_f S + b_{fr} R + b_{fm} M + b_{fn} N + e_f
\]

where \(S\), \(R\), \(M\), \(N\), and \(F\), represent the status level, religiosity, metropolitan residence, nuptiality (the proportion of married women in the 20–24 age group) and total fertility respectively. These regressions, which are not specified in the tables, show that, as in European countries, social structure affects fertility levels, at least partly, through nuptiality.

SOME COMMENTS ON THE HIGH FERTILITY OF THE RELIGIOUS POPULATION

The aim of this study was to show that when religiosity is controlled, each of the two major ethnic groups can be shown to have joined, or is about to join, the transition to below replacement fertility. However, the fertility levels of the religious and the non-religious populations can only be estimated indirectly.

We use estimates from the regression equations discussed above to illustrate numerically the effect of religiosity on fertility for the European ethnic group. These are presented in Table 4.

Table 4. Predicted total fertility under assumed values for major explanatory variables

<table>
<thead>
<tr>
<th>Per cent religiosity</th>
<th>Per cent Women's High Education</th>
<th>Metropolitan residence</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>36 Per cent</td>
<td>50 Per cent</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>80</td>
<td>7.25</td>
<td>7.02</td>
</tr>
<tr>
<td>50</td>
<td>5.27</td>
<td>5.04</td>
</tr>
<tr>
<td>25</td>
<td>3.62</td>
<td>3.39</td>
</tr>
<tr>
<td>0</td>
<td>1.97</td>
<td>1.74</td>
</tr>
</tbody>
</table>

* The mean percentage for women's education is 36.

The dominant effect of religiosity on fertility is evident. The table shows quite clearly the descent from extremely high fertility levels in religious communities, to below replacement fertility in non-religious ones. For example, total fertility for a unit with 80 per cent religiosity is over 7. Although this figure is an extrapolation, its comparison with alternative independent estimates shows consistency.

Stable population fertility levels for two religious sub-groups could be estimated by using their age distributions in school populations. Hence, we obtain total fertility of 7.2 and 4.6 respectively for the ultra-orthodox and the national religious populations. These are consistent, in general, with the extrapolated regression estimate.

A third estimate based on indirect standardization. According to this, total fertility in the ultra-orthodox population of Jerusalem is about 7.5, a figure which should, however, be considered an upper limit.

Is it possible to explain the very high fertility levels of the religious population, in view

of its being part of a modern society? We argue that the socio-cultural structure of the religious population, particularly of the ultra-orthodox group, explains its high fertility. Heilman and Friedman have argued that the key instrument of the high fertility levels, the high growth rate, and the survival of this group, is its own independent educational system. Education begins at a very early age, and male students remain in the more advanced educational institutions until their mid-thirties, if not forties. Hence, the ultra-orthodox created a 'society of scholars', of 'persons who first and foremost saw themselves as people of the book'. At the same time, women are regarded as supports of scholars. Indeed, women are the main breadwinners in many ultra-orthodox families. They are engaged in various occupations such as teachers — in an ever growing young 'closed' population — clerical and sales workers, particularly in employments which do not involve the necessity of mixing with people of the 'outer' world.

Marriages in the ultra-orthodox community are 'arranged' and take place at an early age. Couples are expected to have their first child within one year of marriage, while high fertility is an encouraged norm throughout marriage. Obviously, many years of education for men, early marriages and household formation, high fertility, and rapid population growth, are societal characteristics which require economic resources over and above those generated by this community. Where do such additional economic sources come from? One source consists of donations made by ultra-orthodox communities around the world. However, the major source comes from the larger society of Israel through generous child allowances, assistance in housing young couples, etc. A most important source is specific funds which are allocated to families by their own community institutions, and which are secured by various governmental authorities. These have been granted for years as part of coalition agreements between the ultra-orthodox parties and the main political parties either on the left or on the right. It has, therefore, been argued that the ultra-orthodox population 'lives in an ambivalent relationship with the larger culture and society. It shuns the values of that larger world while depending on it...'. Hence, at the individual level there is no conflict with high fertility, as long as women can work while children are either at school for the day, or with boarding arrangements, with no costs to parents. Younger children are looked after by relatives through family arrangements, when the mother is unable to do so. On the economic side, state allowances given directly to families, or funds secured through the community, which are at least partly allocated in relation to family size are clearly pro-natalist. Social norms and religious commands related to marriage and childbearing clearly encourage early marriage and high fertility. And in this respect the importance of internal community pressures on individuals to conform with its norms, should not be underestimated. Clearly, rapid population growth under such optimal conditions is a source of community power both internally and towards the larger society.

CONCLUSIONS AND IMPLICATIONS

Fertility has declined to below replacement levels in many of the modern industrialized countries during the last three decades. This decline has been explained by various modern socio-economic characteristics, which are in conflict with high, even moderately high fertility levels. The change in women's status was associated with increased participation in non-familial activities such as employment. The increasing costs of

17 S. C. Heilman et al., loc. cit., see fn. 6, p. 9.
19 S. C. Heilman et al., loc. cit., see fn. 6, p. 22.
raising ‘quality’ children is another example of such a conflict. Such processes of change have affected fertility both through declines in nuptiality and delayed childbearing within marriage.

The Jewish population of Israel is a modern society with characteristics similar to those of European populations. Recent changes in the status of women, in women’s employment, in consumption patterns and in many other characteristics are common to Israel and to European countries. Yet, total fertility in Israel during the early 1980s was well above replacement level and at least one child higher than in most European countries. We have shown that social heterogeneity makes this an oversimplified and misleading comparison. It has been shown that fertility in the European ethnic group is, indeed, at European levels, if religiosity is controlled at low levels. It has also been shown that the Asian–African ethnic group is proceeding towards low fertility, given its increasing educational levels and other modernization characteristics. Hence, it is the very high fertility of the orthodox population and the moderately high, but declining, fertility of the Asia–Africa ethnic group, combined with the low fertility of the non-orthodox European ethnic group, which produce the high average fertility of the population as a whole.

A review of the major patterns of fertility and their determinants since the 1950s suggests a very significant transformation. While in the 1950s and 1960s the major explanations of fertility variation were ethnicity and socio-economic status, these have been replaced by religiosity during the 1970s and the 1980s.\(^\text{20}\)

The high fertility of the ultra-orthodox has been explained by its way of life, its socio-economic structure, and its political power. Only a radical change in the economic and political relationships between this group and the larger society can reduce motivations for very large families, a contingency which seems unlikely in the foreseeable future. Hence, given the very high fertility of the religious population combined with below-replacement fertility of the non-religious population, a continuous increase in the proportion of the religious population and its political power can be expected. Will this population, eventually, achieve majority status?

Acknowledgement

While Ron Freedman was Einstein Visiting Fellow at the Hebrew University in 1987, he often expressed astonishment at the high national fertility in Israel compared with Europe, despite its modernity. This article is dedicated to him with the hope that it clarifies the issue.

We are grateful to Jona Schellekens for his valuable comments on an earlier version.

\(^{20}\) D. Freidlander *et al.*, *loc. cit.*, see fn. 4.